The Nice user's manual
Daniel Bonniot
Bryn Keller

Francis Barber

The Nice user's manual
Daniel Bonniot

Bryn Keller

Francis Barber

Copyright © 2003 Daniel Bonniot

Table of Contents

0= Yo (o viii
L PRITOSOPRY e 1
2. PACKAOES ... e e e a e 2
Themai N MEOo e 2

3. ClasseS AN INLEITACES ... e 3
(= o To = W = 3
[T= o PP 3
CONSIIUCTONS ...ttt ettt et et e ettt et et e e e e e e e e et e et e et e anaaannas 3
ParamELriC ClASSESuiieiiiiii et et aas 5
Declaring an INterfaCeoouiiiii e 6

S LU 41 = (Lo PP 8

A IMEBINOOS ... 9
Declaring MELNOAScooeiiii e 9
IMplementing MELNOASiiiii e 9
VaAUEDISPAICN ...t 11
NAMEA PArEMIELENSeei e et e e e e e e e e e e e e e eaeees 12

(O o100 I o= = 111 £ 12

5. ASSEItIONS 8N CONIIBELSeevviieeeii et et e e e e e eeaens 14
Y11= PP TPPPI 14
Enabling assertions and contract CheCKingcc.uuieiiiiiiieiiiii e 14

BB G - 14 o B PSP 14

0 L 0 I 2 o o I 0 PP 14

RS = 1= 011= 01K PP UPPT 16
Local variables and CONSLANESoeeeeveieiiiiie e 16
Package variables and CONSLANESviiiiiiiieiii e 16
Extended f Or StateMENtoooeniii e 16

LOCEAl MELNOAS ... et et e e e e 17

R o (=S o 1 18
MELNOO CAIIS .oveieieii e e e et 18
Block Syntax for Method CallScocvvniiiiiiiiii e 18

LI o)L= PSPPSR 19
AATTEYS et 19
SHING LITEIalS .. et e aes 20
MUILI-TINE SEFINGS o e e e e 20

S (T alo Jwlolglor 1= 47 1 o] o [N 20
ANONYMOUS MELNOAS ... civeieii e e e e e e e e e aaas 21
(©07C - 0] £ TP PPPI 22
Conversion between PrimitiVe LYPESociieiiiiiiii e 22

8. InterfaCing With JAVA ... e 24
USING JAVATIOM NICE e e e 24
SUBCIASSING AJAVACIBSS ...cevuiiiiieiie e e 24

IMPOItiNG PACKAGES .vvvneeetieei e e e e e e e e e e e e e e e e e e aaaees 24

L0011 I Y o= PSPPSR 24

USING NICEFIOMI JAVEA ...ttt et e e 25
Calling aMENOTieeeee e 25

Caling @ CONSIIUCLONivieieeit e e e e e e e e ees 25

COMPIELE BXAMPIE ...e e 25

(O ol (007l o= = 1011 (= £ 26

OtNES BSPECES ... ettt e 26

LS 3 o= T PP 27
(O o100 1Y/ o= J TR 27

L0 =SS = 1 o 28

TYPE PArBMELENS ...ouiieiieii et 29

The Nice user's manua

Abstract Interfaces

List of Tables

5 T O o 1= > (] £

Vi

List of Examples

3.1. Class definition and creations using the automatic CONSrUCtOrccvuvevvnieiiiieriiieeninas 3
3.2. Class definition and creations using CUStOM CONSLIUCIONSvvvneveeniieieeeieeeii e eaieeeiees 4
B I O ==Y 1 1 (1= .= PP 5
3.4, SIMPIE JAVA COIECIION ...ceeeiieeei et e 5
3.5. SIMPIENICE COHECLION ...t e e e e 6
3.6. Declaring an INtErfacecoviiei e 7
3.7. Declaring an Interface with External Methodscoooviiiiii i 7
4.1, Method IMplEmMENtaioNcueiiii e e e e e e e e e eees 9
4.2. Using Type Parametersin Method Implementationsoveviiiiiiiiiiiinieciieeeii, 10
A.3.ValUE DISPAICH ...ooeeiiee e 11
4.4. USING NAMEA PAIAIMELENS ... et et ettt e e et et e et e e e e e et e e et e et e e et e aeaaaeen e 12
4.5. Using named and optional Parametersccoveiuiiiiiii i 12
oI B O 4 o £ S PP PUPPTUPPT 14
6.1. Extended f OF SEAEMENTiiiiii e 16
6.2. Extended f o With RANGEScooviiiiiii e 16
6.3. LOCE MEINOT ... 17
7.1. Block syntax for method Callsoiiiiiiie e 18
7.2. Method returning several values using atupleoevviiiiiiiiiii e 19
7.3. Initidlizing an array with asingle valuecooovii i 20
7.4. Initializing an array with acalculated valuecccooiiiiiiiiii e, 20
7.5, MUI-TINE SEINGS «. ettt eaans 20
7.6. StrING CONCALENALIONeeeetieeeiiti ettt ettt ettt ettt e et e et e e e e e e e ena e e eenans 21
7.7.Using ANONYMOUS MELNOUSieeiiiiieii et 21
7.8. Converting avalue of aprimitivVetypecou i 23
8.1. USINg NICETIOM JAVA ...uiiiiieiii e et e e e e e e e e 25
LS I U S T o I o 1 o g I Y o= 27
9.2. Nullnessinference With fieldsooveuiiiii e 27
9.3. Proving the type of an OBJECEooiiiiiiii e 28
9.4. A copy method With @n @XaCE tYPEveeniii e 29
0.5, ADSIIaCt INEEITACES ...t 30

Vii

Foreword

This manual describes the Nice programming language. It is currently under redaction, which means that
many aspects of the language are absent from it, or that some sections are mostly empty. During this
time, it is recommended to read also the Nice tutoria [http://nice.sf.net/language.html], which contains

lots of additional information. Both documents currently assume some knowledge of Java, or at least of
an object oriented language.

The authors of this manual are Bryn Keller and Daniel Bonniot, with contributions from Francis Barber.

viii

http://nice.sf.net/language.html

Chapter 1.

Philosophy

A language that doesn't affect the way you think about programming, is not worth

knowing.

—Alan J. Perlis

The art of progress is to preserve order amid change and to preserve change amid or-

der.

—Alfred North Whitehead

The Nice programming language is a new object-oriented programming language based on Java. It in-
corporates features from functional programming, and puts into practice state-of-the-art results from
academic research. This resultsin more expressivity, modularity and safety.

Safety

Modularity

Expressivity

Nice detects more errors during compilation than existing object-oriented languages
(null pointer accesses, cast exceptions). This means that programs written in Nice
never throw the infamous Nul | Poi nt er Excepti on nor Cl assCast Excep-
tion. This aspect is developed in more detail in this article
[http://nice.sf.net/safety.html].

In object-oriented languages, it is possible to add a new class to an existing class
hierarchy. In Nice, it is also possible to add methods to existing classes without
modifying their sourcefile. Thisis aspecia case of multi-methods.

Many repetitive programming tasks can be avoided by using Nice's advanced fea-
tures. Ever got bored of writing tons of loops, casts, overloaded methods with de-
fault values, ... ?

http://nice.sf.net/safety.html

Chapter 2. Packages

A package is a group of related classes, methods, and variables. You can declare that all the code in a
particular . ni ce file belongsto a certain package with the declaration:

package package-nane;
To make use of all the public entities from another Nice package, usethei nport statement:
i mport package- nane;

Note that this is somewhat different from Java packages. In Java, a class can be used independently of
its declaring package. In Nice methods can be declared outside classes, so importing the whole package
is important to know the methods available for a given class. This probably implies that Nice projects
should be designed with smaller, self-contained packages that Java projects.

Therefore, only whole packages can be imported. It is not possible to import a single class. Likewise,
there isno need to include a . * after the package name as in Java. In fact, using . * indicates that you
wish to import the contents of a Java package rather than a Nice package. See the section on Java im-
ports for details.

The mal n method

If a package contains a method whose nameis mai n and the method has avoi d return type and takes a
single String[] asitsargument, this method receives special treatment, in that when the program is
run, execution will begin with this mai n method. The runtime system will pass the command line argu-
ments used to invoke the program as the argument to nai n.

Note that since the main unit of code in Nice is the package, and not the class, the mai n method should
be implemented outside of any class declaration.

Chapter 3. Classes and Interfaces
Declaring a class

Fields

The main component of a classis the list of its fields. A field is a variable that is attached to each in-
stance of the class. It has a type, a name, and optionally a default initial value. The syntax for field de-
clarationis:

type field-name[= initial-value];

If no default value is given, then every call to the constructor must specify the value for thisfield. If itis
given, acall to the constructor call still override it with a different value, in which case the default value
is not computed (thisfact is only important if it has side effects).

Constructors

Classes in Nice have a default (or "automatic") constructor which is generated automatically by the
compiler. This constructor allows al the fields of the class to be specified explicitly, though if the field
has a default value in the class definition, it can be omitted from the constructor call and the default
value will be used. In many cases this default constructor is all that is needed, and it saves the program-
mer from having to write tedious code that simply accepts values and assigns them to fields.

Example 3.1. Class definition and creations using the automatic constructor

cl ass Car

String brand;

String nodel ;

i nt number O Wheel s = 4;

i nt number O Dri vi ngWeel s = 2;

}/oi d test()

Car renault5 = new Car(brand: "Renault", nodel: "G nqg");
Car jeep = new Car(brand: "Jeep", nodel: "Sone jeep", nunmber O DrivingWeels: 4);

It is required to include the names of the fields in the call to the constructor. This is important for two
reasons. First, it is easy to understand what the arguments represent, without looking at the class defini-
tion. Second, it does not require some arbitrary ordering of the fields 1 Because the names of the fields

A problem happens in Java when the order of the parameters of a constructor should be changed. This requires modifying all the
call sites, which is at best tedious and error-prone, at worse impossible (when writing a library used by others). When the order is
changed and some caller are not modified, the following happens: if the exchanged parameters have incompatible types, the com-
pilation of the caller will fail; otherwise the code might even compile and produce wrong results at runtime. There is no simple
way to solve thisissuein Java. Using namesin the call to the constructor in Nice is the solution.

3

Classes and Interfaces

are used, they can be given in any order.

When more control over construction is desired, it is possible to write new constructors that can be used
in place of the automatic constructor. These are written much like any other method, but they use a
dightly different declaration syntax:

new cl ass- nane(paramtypeparam nanme[= initial-value], ...)
nmet hod- body;
thi s(argunent, ...);

This syntax requires that the last statement in any custom constructor calls some other constructor for
the same type. In most cases, the automatic constructor will be called.

Example 3.2. Class definition and creations using custom constructors

/**

* Ol ass which encapsul ates a strategy for

* way of translating a character.

*/

cl ass Transl ator

{
/1 The function that actually perfornms the translation
char ->char transFunction;

/] conveni ence met hod
char transl ate(char input)

return (this.transFunction)(input);

}

/**

* Constructor which takes a map of characters, and
* returns a Translator which | ooks up the input

* character in the map, or just returns the iInput
* character if it's not in the map.

*/

new Tr ansl at or (Map<char, char> charact ers)

thi s(transFunction: char ¢ => characters.get(c) || ¢);

/1A transl ator which provides rot13 ciphering.
/1 Uses automatic constructor.
var Translator rotl1l3 = new Transl ator(transFuncti on:
char ¢ => char(int(c) + 13));

/1A transl ator which just changes or 'S to'$'.
/1 Uses custom constructor.

var Transl ator sToDol |l ar = new Transl ator(characters:

S

Classes and Interfaces

It is also possible to define initializers for your classes. An initiaizer is simply a block of code that ex-
ecutes after construction is finished. To define an initializer, simply include code directly in the class
definition, inside a block:

cl ass cl ass-nane

{
initializer

}
fi el ds- and- net hods

Here is an example. Notice that since the initializer runs after any constructors, the hidden counter field
will always be set to zero, even if the caller had tried to set it to some other value when the object was
created.

Example 3.3. Classinitializers

cl ass Count er

this. _internal _counter = O;

}

int _internal _counter = O;

}

Parametric classes

A powerful feature of Nice is the ability to define parametric classes. Parametric classes are like tem-
plates in C++, or similar constructs in various functional languages. Programming with parametric
classes is sometimes called generic programming.

A parametric (or parameterized) classis simply a class which has a parameter. |n this case the parameter
is a type rather than a value. You can consider a parametric class as a family of related classes, al of
which have the same behavior and structure except for the part that is parameterized. A common case
where thisis useful isin data structures.

Example 3.4. Simple Java Collection

cl ass Stack

{

Li st contents = new LinkedList();
voi d push(Cbj ect 0)

contents. add(o);

Classes and Interfaces

}

/l... omtted methods
public static void main(String[] args)

Stack st = new Stack();
st. push("Test");
Integer num= (Integer)st.pop(); // Runtinme error

}
}

There is a big type safety problem here. We pushed a String on to the stack, and then tried to pop it off
into an Integer, resulting in an exception at runtime. Parametric classes can solve this problem.

Example 3.5. Simple Nice Collection

cl ass Stack<T>

Li st<T> contents = new Li nkedLi st ();
voi d push(T t)
{

contents. add(t);

}

//... omtted methods

}
void main(String[] args)

Stack<String> st = new Stack();
st. push("Test");
Integer num = st.pop(); // Conpile tine error!

In the Nice version, we have parameterized St ack by atype T. Essentially, Stack<T> isarecipe for the
compiler that tells it how to create a St ack that works for any given type. So now the compiler knows
that we only mean for Strings to go into our stack, and it reports an error when we write code that ex-
pects an Integer to come out of our Stack<String>.

Declaring an Interface

Nice has single inheritance, like Java or C#, which means that each class can have at most one super-
class which it extends. Sometimes, it would be nice to have a class that "extends" two (or more) differ-
ent classes, taking some of its behavior and data from each. In Nice, asin Java, this can be accomplished
viainterfaces.

Interfaces are declared just like classes, except that they may not contain data fields, only methods. Un-
likein Java, they may also contain default implementations of the methods, making interfaces more con-
venient and useful than Javainterfaces.

To say even this much is still to think of interfaces in Java terms, however. In Nice, an interface doesn't
really "contain" anything at all, it's just a marker. Just asj ava. i 0. Seri al i zabl e isjust atag to

6

Classes and Interfaces

tell Javathat it's okay to use serialization on instances of aclass, all Nice interfaces arereally tags.

Thisis because Nice has multi-methods, which are defined by themselves and not contained in a class or
interface. It is aways possible to define new methods for an interface, just as it is always possible to
define new methods for a class. Another consequence of the fact Nice is based on multi-methods is that
interface definitions can "contain” not only method signatures, but also default implementations.

Nice does accept a style of interface definition similar to Java's, as in the following example:

Example 3.6. Declaring an Interface

i nterface Conponent

String getlX);

(int,int) getPosition();
(int,int) getD nensions();
i{nt get Area()

(int width, int height) = this.getD nensions();
return width * height;

However, it's equally possible to define the same interface in this style:

Example 3.7. Declaring an Interface with External Methods

i nterface Conponent {}

String getlD(Conponent conp);

(int,int) getPosition(Conponent conp);
(int,int) getD nensions(Conponent conp);
i nt get Area(Conponent conp)

(int width, int height) = conp.getD nensions();
return width * height;
}

and in fact, it's fine to mix the two styles, declaring some of the methods inside the i nt er f ace block,
and some outside. One good practice might be to declare those methods which have no default imple-
mentation inside the i nt er f ace block, and those with default implementations outside of it. That way
someone reading the code will have a clear idea of which methods must be implemented when imple-
menting an interface. Of course, the compiler will ensure that all necessary methods are implemented, so
thisis only a suggestion.

Classes and Interfaces

Enumerations

Enumerations or simply (enurms) are a group of related constants. Many languages support defining
simple constants, and of course Nice does also. Many programs are written to use certain numeric con-
stants with special meanings. For instance, one might write a method for a vending machine:

let int NICKEL = 5;
let int DIME = 10;
let int QUARTER = 25;
cl ass Vendi ngMachi ne

i nt change = 0;

voi d addCoi n(Vendi nghMachi ne nachi ne, int cents)

nmachi ne. change += cents;

}

but this method isn't very safe! It will accept any amount of change, including nonsensical amounts like
3, or 234320. One way to address this problem would be to do runtime checks to ensure that the value is
acceptable, and throw an exception if it is not. However, there is an easier solution in Nice: the enum.

enum cl ass- nane[(paranet er-type paraneter-nane, ...)]
option,...
Enums can be simple symbols like
enum Color { Red, Orange, Yellow, Blue, Indigo, Violet }
or they can contain integer (or other) values:

enum Vendi ngCoi n(i nt val ue)

ni ckel (5), dime(10), quarter(25);

cl ass Vendi ngMachi ne

i nt change = O0;

voi d addCoi n(Vendi ngMachi ne machi ne, Vendi ngCoi n cents)
{
machi ne. change += cents. val ue;

}

Of course, arealistic vending machine would have to keep track of the actual number of each coin rather
than a total value!

Chapter 4. Methods
Declaring methods

Method declaration takes the following form:
[type-paraneters] return-type method-nane ([paraneters]);

Note that in Nice, methods can be defined within the body of a class definition, or outside of it - both are
identical for the compiler's purposes.

It is adso possible to define a default implementation at the same time that the method signature is
defined. Thisform looks like:

[type-paraneters] return-type method-nane ([paraneters]) { code-body }

Implementing methods

In comparison to their declarations, method implementations can be quite terse:
nmet hod- name ([argunents]) { body }

Thereisaso aspecia form for methods which consist of a single expression:
nmet hod- name ([argunents]) = expression;

The[ar gunent s] consist of names, and optionally types, of the form

name

or

cl ass- nanme nane

Thecl ass- nane is used to specialize the method on that argument. An example should make the dif-
ference clear. Also note the use of both the block- and expression-style methods.

Example 4.1. Method I mplementation

class Vehicle {}
cl ass Mdtorcycle extends Vehicle {}
cl ass Car extends Vehicle {}

/| Decl are met hod
i nt nunber O Wheel s(Vehi cl e vehicl e);

[/ Default inplenmentation
nunber Of Wheel s(vehi cl e)

t hrow new Excepti on("Unknown nunber of wheels!");

}

/] Speci alize for Cars
nunmber O Wheel s(Car car)

Methods

return 4;

}

/] Speci alize for Mdtorcycles
nunber O Wheel s(Mt orcycle nt) = 2;

It is also possible to specialize a method on the exact class of the argument. Then the method will apply
to arguments which match the class exactly, and not to an argument which is a subclass of the class spe-
cified. The syntax for exact matching is:

#cl ass- nane nane

Specializing on the exact class of an argument is useful in situations where an implementation is correct
for acertain class, but you know that each subclass will require a different implementation.

There is also an example where exact matching is required to type-check a method with a precise poly-
morphic type.

When specializing a method with type parameters, it is not necessary or possible to restate the type para-
meters in the method implementation. However, if you need access to the type parameters as in the ex-
ample below, use the syntax:

<t ype- par anet er s> net hod- name ([argunents]) { body }

Example 4.2. Using Type Parametersin Method | mplementations

/1 Method definition
<T> T lastltem Col | ecti on<T> coll);

/* This version is incorrect because the type paraneter T is not in scope:
lastlten(coll)

{ ”erator<T> it =coll.iterator();
b

/1 This one will work correctly:
<T> lastltem(coll)

Iterator<T> = coll.iterator();
...
}

Note that it is not possible to dispatch a method call on an array type, nor to specialize a method on the
subtype of atype parameter. This means that method implementations of the form:

foo(Coll ection<String> string){}

10

Methods

or
foo(String[] array){}

are not vaid. Y ou should use respectively the specializers Col | ect i on and Ar r ay instead.

Value Dispatch

In addition to choosing a method based on the classes of the arguments, it's even possible to override a
method based on the actual values of the arguments. Currently this feature works with integers,
booleans, strings, characters, enums, and class instances which are used as package level constants. It is
also possible to override a method for the special case of null.

This feature makes it convenient to code things that might otherwise have required switch statements or
nested if/el se statements. Using value dispatch can be more flexible than switch or if/else statements, be-
cause you can always add new alternatives conveniently by just adding a new method implementation.

Example 4.3. Value Dispatch

String digitToString(int digit, String |anguage)
requires 0 <= digit < 10;

digitToString(digit, |anguage)

t hrow new Exception("Couldn't convert "digit" to | anguage "l anguage);

}

digitToString(1l, "english") = "one";
digitToString(2, "english") = "tw";
digitToString(3, "english") = "three";
digitToString(1, "french") = "un";
digitToString(2, "french") = "deux";
digitToString(3, "french") = "trois";

String bool eanToYesNo(bool ean bool);

bool eanToYesNo(true) = "yes";
bool eanToYesNo(fal se) = "no";

enum Grade {
A B C D F

Grade char ToGrade(char input);

charToGrade('a') = A
charToGrade('b') = B;
charToGrade('c') = C
charToGrade('d') = D
charToGrade('f') = F;
char ToGr ade(i nput) {
throw new |11 egal Argunent Excepti on("Not a grade letter: " + input);
}

char gradeToChar (G ade grade);
gradeToChar(A) = 'a';
gradeToChar(B) = 'b';

11

Methods

gradeToChar (C)
gradeToChar (D)
gradeToChar (F)

o
Q0

cl ass Person

{

}

| et Person BOB = new Person();
voi d greet(Person p)

println("Hello, anonynous person!");

gr eet (BOB)
println("H Bob!");

<T> int contai nsHowMvany(?Li st<T> |ist);

<T> cont ai nsHowiany(List list) = list.size();
cont ai nsHowMvany(null) = 0;

Named parameters

When calling a method it is possible to specify the name of a parameter, followed by : before the value
given to that parameter. Named parameters can be given in any order. This is useful when writing the
call, because one does not need to remember the order of the arguments, but only their names. This
makes the code much easier to understand what each parameter represents, provided that parameter
names are chosen carefully.

Example 4.4. Using named parameters

void copy(File from File to) { ... }

copy(from f1, to: f2);
copy(to: f3, from f4);

It is of course still possible to omit the names of the parameters, in which case the arguments must be
given in the order of the declaration.

Optional parameters

Many methods have some parameters that are used most of the time with the same value. In Nice, a
parameter can be given adefault value. That argument can then be omitted when calling the method, and
the default value will be used.

Example 4.5. Using named and optional parameters

12

Methods

voi d copy(File from File to, int bufferSize = 1000) { ... }
copy(from f1, to: f2); // with a buffer size of 1000
copy(from f1, to: f2, bufferSize: 4000);

In the method definition, the optional parameters should be listed after the required parameters. Thisis
needed to allow calls that do not name the arguments and want to use the default values for the optional
parameters.

Note that the optional values of parameters can be based on other parameters, for example:

T[] slice(T[] array, int from= 0, int to = array.length - 1);

Method implementations must still bind all parameters, including the optional ones, and can dispatch on
them.

13

Chapter 5. Assertions and contracts
Syntax

The syntax for assertions is the same as in Java (since 1.4). Assertions are statements of the following
form: assert <bool ean expression> : <error nessage>. The <error message> is op-
tional.

Preconditions are introduced with the r equi r es keyword, and postconditions with the ensur es
keyword. If there are several conditions in either section, they must be separated by commas. For con-
venience, an optional trailing commais accepted.

In amethod returning a value, the specia variable namer esul t can be used to refer to the result value
of the method in the postcondition. The ol d to refer to values before the execution of the method is not
supported yet.

For example, we can define the contract of the add method of a Buffer interface. It is guaranteed that

i SEnpty returnst rue if, and only if, si ze returns 0. The add method can be called only when the
buffer is not full. It is guaranteed to make the buffer non-empty, and to increase the size by one.

Example5.1. Contracts

i nterface Buffer<El enr

int size();
bool ean i sFull ();
bool ean i sEmpty() ensures result == (size() == 0);
voi d add(El em el enent)
requires
Pisfull () : "buffer nmust not be not full" // A comma here is optiona
ensures
lisEnpty() : "buffer nust not be enpty", /1 Note the comma
size() == old(size()) + 1 : "count inc"

Enabling assertions and contract checking

By default, assertions and contracts are not used at runtime. They are discarded by the just-in-time com-
piler, and should cause no slow-down. They can be turned on when starting the VM.

JDK 1.4 and later

The mechanism is the same as for Java assertions. Checking can be enabled at runtime withj ava - ea

JDK 1.1,1.2and 1.3

Contrarily to Java, Nice produces programs with assertions that can be run on earlier JDKs. Therefore

14

Assertions and contracts

there is no problem to distribute Nice programs using assertions and contracts. Since java will not know
the - ea command line option, they are disabled by default. You can enable them with j ava -
Dassertions=true

15

Chapter 6. Statements
Local variables and constants

Local variables may be defined with thevar keyword. Here is the syntax:

var [type] variable-name [= initial-value]

For local variables (not package variables), the Nice a so accepts the Java style of declaration:
type variable-name [= initial-val ue]

Constants are declared with "let":

let [type] variable-name [= initial-val ue]

If the variable or constant is of a simple type (i.e., not a parameterized type), then it is not necessary to
specify the type yourself, the compiler can infer the correct type automatically.

Package variables and constants

Since Nice uses packages as its largest conceptual unit, variable and constant declarations may appear
outside class definitions, and are useful in the same way that static variables in Java are. Package vari-
ables are introduced with var , and package constants with | et . The type must be specified, sinceitisa
useful documentation.

Extended f or statement

Nice supports the traditional f or loop, with the same syntax as in Java. In addition, it provides a form
that allows iterating over the itemsin a sequence like C#sf or each. Hereisthe syntax:

for (itemtype variable-nane : container) { body }

Currently, this version of the f or statement can be used to iterate over Col | ecti ons, arrays,
Ranges, Stri ngs,and St ri ngBuf f ers.

Example 6.1. Extended f or statement

let String[] strings = ["one", "two", "three"];
for(String s : strings)

println(s);

Since Nice aso has syntax for generating ranges of humbers, another convenient way to use the f or
statement is as follows:

Example 6.2. Extended f or with Ranges

16

Statements

//Print nunbers from1 to 10, inclusive
for(int i : 1..10)

println(i);

Local methods

Local methods are similar to regular methods (defined at the package or class level), except that they are
defined inside another method, and therefore only usable in that scope. They can refer to local variables
from their context. Like anonymous methods, local methods cannot be overridden.

Example 6.3. Local method

W ndow cr eat eMyW ndow()
{
W ndow w = new W ndow() ;
voi d addMyButton(String text)

w. addBut t on(new Button(text));

}

addMyBut t on(" One") ;
addMyBut t on(" Two") ;
addMyBut t on(" Thr ee") ;

17

Chapter 7. Expressions
Method calls

A cal isusualy of theformf (el, ..., en).f canbeamethod name, or more generally any ex-
pression which has a method type (for instance, alocal parameter). el, ..., enisthelist of argu-

ments to the method. Arguments can optionally be named.

In many object-oriented languages, methods are called with the syntax el. f (e2, ..., en). This
syntax is also accepted in Nice, and is completely equivalent to the previous one. In particular, e. f can
be used to retrieve the value of thefield f in the object e 1

It is possible that a name refers to severa unrelated methods. In that case, the types (and if applicable
names) of the arguments are used to try to disambiguate which method must be called. If only one meth-
od is applicable, it is called. Moreoveré if several methods are applicable, but one has a more restricted
domain than al the others, it is chosen < . Otherwise, the compiler reports an ambiguity error.

Block Syntax for Method Calls

Nice supports an alternative syntax for method calls when one of the arguments is a method of type
void-> T:
net hod- name(ar gunent, ...)

ar gurrent - body

If an anonymous method would normally be used, it is permissible to omit the arguments and => and in-
stead write the code for the anonymous method in a block following the call. An example will be help-
ful:

Example 7.1. Block syntax for method calls

/I First define the method we're going to call:
//Like an "if' statenent
voi d when(bool ean condition, void->void action)
if (condition)
action();

/I Now exercise our nmethod with bl ock syntax:
void main(String[] args)
when(1l > 0)

println("Math is working correctly!");

L A conseguence of these rulesisthat if thefield f contains amethod, it must be called with (e. f) (el, ..., en).

For instance, suppose two methods <T> voi d foo(Coll ecti on<T>) and <T> voi d foo(List<T>) are declared,
and aLi st isan expression of static type List. The expression f oo(aLi st) will result in calling the second f oo method, be-
cause List is asubclass of Collection.

18

Expressions

Note that we could just as easily have written:

when(1l > 0, () => {
println("Math is working correctly!");
1)

but with the alternative block call syntax, the code becomes less cluttered, and easier to read. It also
helps to eliminate the distinctions between built-in statements and user-defined methods. For instance,
the standard usi ng statement is actually just a method defined in the standard library.

Tuples

A tuple is a grouping of several values in a single expression. For instance, (" Hel | 0", 2*3,
x.toString()) isatuple whose elements arethe string " Hel | 0", the number 6 and the string rep-
resentation of x. The type of atupleis a tuple type, whose elements are the types of the corresponding
values. The type of our exampletupleis(String, int, String).

A tuple can be of any length. In english, atuple of two elementsis called a couple. For an arbitrary num-
ber n, atuple of n elementsis called an-tuple.

Tuple types are covariant, so a couple of ints can be used where a couple of longs is expected.

A funny feature is that swapping two variables can be done without a temporary variable, using tuples:
(x, y) = (y, X).Animportant use of tuples isto allow a method to return severa values. Ex-
ample 7.2, “Method returning several values using atuple” defines and uses the method mi nMVax, which
takes two integers, and returns the smallest first, the biggest second.

Example 7.2. Method returning several values using a tuple

(int, int) mnMax(int x, inty) =x <y ?(x, V) : (y, X);
void printTuple((int x, int y))

println("(" + x + ", " +y+")n);
void main(String[] args)

print Tupl e(m nMax (14, 17));
print Tupl e(m nMax (42, 41));

Notethat pri nt Tupl e hasonly one argument, which is atuple. We give the namesx andy to the two
components of thistuple, so that we can use them directly in the implementation of the method.

Arrays

19

Expressions

An array can be created by simply enclosing the elements of the new array in brackets.
cl ass-nanme[] variable-name = [elenentl, element2, ...]

It is also possible to create an array which is filled with nulls, or some single value, or a value which is
calculated on a cell-by-cell basis, by usingthef i | | method in the standard library.

Example 7.3. Initializing an array with a single value

ill every cell with the value 5000.
[1] points = new int[10];
I(

F
t
I (points, 5000);

/1
in
fi

Example 7.4. Initializing an array with a calculated value

[lbuild a little table of squares
int[] squares = fill(new int[10], int i =>1i * i);

String Literals
Literal strings are surrounded with double quotes, for instance:
String s = "Hello";

The backslash character \ isused for escaping, asin Java.

Multi-line Strings

Nice also allows multi-line string literals, using syntax borrowed from the Python language. Multi-line
strings begin and end with three double quotes. Within multi-line strings, double quotes do not need to
be escaped, unlessthere are threein arow.

Example 7.5. Multi-line strings

let greeting ="""
Hel |l o, world.
You may be thinking, "Why was | called here today?"
Well, there was a good reason. Honest.

String concatenation

20

Expressions

Just asin many other languages, strings can be concatenated using the plus (+) operator.

Strings can also be combined by simple juxtaposition - that is, by placing them side by side with some
other expression. For example:

Example 7.6. String concatenation

String nane = "Nice";
int factor = 10;
println("My favorite | anguage is nane ", which is factor
" tines better than what they make nme use at work.");

Anonymous methods

Since Nice alows methods to be passed as arguments, and returned as results, it is convenient to allow
small anonymous methods to be defined at the same point in the program in which they are used, similar
to the use of anonymous classes in Java. Anonymous methods cannot be overridden, and have exactly
one implementation.

The syntax of anonymous methodsis:

([parameters]) => { body }

As with named methods, there is also a single-expression format:

([parameters]) => expression

The parentheses around the parameters are optional if thereis only one parameter.

The return type of an anonymous method is automatically determined by the compiler using a process
called typeinference, so it is not necessary or possible to specify it.

Example 7.7. Using Anonymous M ethods

String concat (Col |l ection<String> strings)

{
StringBuffer buff = new StringBuffer();
strings.foreach(String s => {
buf f . append(s);
1))
return buff.toString()
}

var String[] nunmberStrings =[1,2,3,4,5].map(int num=> String.val ueX (nunj);

/1 Anot her way of defining "concat"
String concat2(Col | ection<String> strings)

return strings.foldLeft((String accum String s) => accum+ s, "");

}

21

Expressions

Operators

Nice supports a wide range of operators which will be familiar to most programmers. The table below

lists the operators, ordered from highest precedence to lowest precedence.

Table7.1. Operators

Operator Kind Associativity
@) grouping none
[1, postfix left
new prefix right
++, -- postfix left
+, -, -~] prefix right
*x binary right
* !, % binary left
+, - binary left
<<, >>, >>> binary left
binary left
<, <=, >, >= binary both
i nst anceof binary left
= | binary left
& binary left
A binary left
| binary left
&& binary left
|] binary left
?: ternary right
=> binary right
*=, /= Y%, +=, -= |binary right
=, =, =, <<=, >>=
>>>=, =

Conversion between primitive types

The numeric primitive types are, from the largest to the smallest: double, float, long, int, short, byte.
Conversion from asmaller to a larger type is automatic. Conversion from a larger to a smaller type must
be done explicitly, since they can lose information about the magnitude of the value.

The explicit conversion is done by calling a special method, whose name is the target type. If e isanu-
meric expression, and t ype one of the numeric types, thent ype(e) will convert the value of the ex-
pression, so that it is represented as a value in t ype. Thisis equivalent to the (t ype) e syntax in
Java.

22

Expressions

In most cases, characters should be treated as abstract entities and not as the numbers that happen to en-
code them. Therefore, the char typeisnot a numeric type in Nice. Operations on characters can be per-
formed using the methods of classj ava. | ang. Char act er . Additionally, it is possible to convert a
character ¢ to itsinteger value with i nt (¢) , and to convert an integer to the character it encodes with
char(i).

For instance, here is code to read characters from a Reader, whose r ead method returns an int (- 1
meaning that the end of stream has been reached):

Example 7.8. Converting a value of a primitive type

| et reader = new BufferedReader (new | nput St reanReader (Systemin));

int v;
while ((v = reader.read()) !'= -1) {
char ¢ = char(v);
. I/ Do sonething with the character.

23

Chapter 8. Interfacing with Java
Using Java from Nice

The Javalibraries are automatically imported as necessary. Thereforeit is straightforward to use existing
Java code in Nice programs. In particular, it is possible to call Java methods, to instantiate Java classes,
to create a Nice subclass of a Java class, overriding methods from the parent, ...

This section lists advanced features related to the use of Java code in Nice.

Subclassing a Java class

A Nice class can extend a Java class, simply by naming it in its ext ends clause. Similarly, it can im-
plement Java interfaces.

When instantiating a Nice class with a Java parent, the automatic constructor comes in several versions,
one for each constructor of the parent class. The call must then provide the values for one of the con-
structors of the parent, followed by the named values for the fields defined in the Nice class.

Importing packages

When Java classes of some package are used frequently, it is possible to make the package part of their
name implicit. For instance, after a declaration i nport java.i 0. *; itispossible to refer to class
java.io.File with the short name File. It is not possible to import only a single name, such asi nport

java.io. File;,youmustimport the whole package.

Classes defined in the current package always have priority over imported packages. If a short name is
used that refers to two classes from imported packages, the compiler will report an ambiguity, and the
fully qualified name must be used.

Option types

Nice's advanced type system makes the distinction between normal (e.g. String) and option (e.g. ?String)
types, which allows to prevent Nul | Poi nt er Except i ons (see option types). This poses a problem
when using existing Java libraries. If my Nice program calls a Java method that returns a String (the
Java type), does it mean String or ?String in Nice? Since Java alows the vaue to be nul | , the Nice
compiler currently supposesit's ?String (it can only be sure about primitive types like int).

/1 Java code
public class MyJavad ass {
public String getName() {
return "foo";

}
}

In Nice, if nyJavaCl ass isavariable of type MyJavaClass, then myJavaC ass. get Nane() has
type ?String.

If the Java code might indeed return nul | , or you are not sure, thisis al good. To use the value you
will have to test it against nul | . However there are many cases where you know the value cannot be
nul |, for instance if this fact is specified in the Javadoc comment of the method. In that cases there are
currently two possibilities. The first is to use the not Nul | method. So in our example not -
Nul I (nyJavad ass. get Name()) hastype String. This solution is simple, but can be annoying if

24

Interfacing with Java

you call the same method many times, or because it makes your code less readable.

The second solution is to once and for all tell the compiler the precise type of the method (this is also
useful for methods with parametric types):

String get Nane(M/Javad ass) = native String MyJavad ass. get Narme() ;

The Nice part (on the |eft of the = character) is the header of a method definition. Note that return typeis
String (without the optional type marker ?). On the other hand, the right part says that the method is
already defined in class MyJavaClass, with name get Nane, the one that takes no argument and returns
a String. With this declaration, myJavadC ass. get Nanme() hastype String.

Using Nice from Java

It is possible to use libraries developed in Nice in a Java program. Before anything, make sure that the
classes generated by nicec can be found on your classpath when you compile the Java program with ja
vac.

Calling a method

For methods declared inside a class, and for those declared at the package level and whose first argu-
ment is aNice class, you can simply use them as usual in Java.

Thisis not possible for methods declared at the package level and whose first argument is a Java class, a
possibly null type or a primitive type. You can call a such a method mdeclared in a nice package pkg
by naming it pkg. di spat ch. min the Java program. It does not matter in what package(s) misimple-
mented: pkg must simply be the package where the method was declared.

Calling a constructor

To instantiate in Java a class defined in Nice, do as usual: call its constructor, using the new keyword.
Nice classes have one automatically generated constructor, with one parameter for each field of the
class, including those inherited from Nice super-classes. Additionally, if some fields have default values,
then a second constructor is generated. It only has parameters for the fields without a default value, and
assigns to the other fields their default value.

Complete example

Example 8.1. Using Nice from Java
Let's see an example that illustrates all these features. Suppose your Nice library looks like this:

package ny. ni ce. pkg;
cl ass Person
String nane;

/1 A nethod:
String display() = "Person: " + nane;

}

25

Interfacing with Java

cl ass Wirker extends Person
int salary;
di splay() = "Worker: " + name + " salary: " + salary;

bool ean isRich() = salary > 500;

Then your Java program can create new persons and workers:

package nai n.java. pkg;
i mport ny.nice. pkg. *;
public class Miin
public static void main(String[] args)

Person p = new Person("John");
Wor ker w = new Worker ("Julia", 1000);

System out. println(p.display());
Systemout. println(w display());
if (wisRich())
Systemout.printin("A well paid worker!");

Optional parameters

Nice allows method and parameters to be optional. Since this feature is not available in Java, you have
to provide the value of all parameters, regardiess of their optionality. The same applies for class fields
with initiaizers: they are ignored in the Java program, and must be given a value in the call to the con-
structor.

Other aspects

Fields of Nice classes are accessed normally from Java programs. It is possible to declare a Java sub-
class of a Nice class. The constructor will need to call the parent constructor. It is not fully possible to
override a Nice multi-method in a Java program. However, provided that the method is compiled as an
instance method, as specified above, you can override that method as usual for Java. That is, only the
first (implicit) argument can be used to perform the override.

26

Chapter 9. Types
Option types

Nice (unlike Java) makes a distinction between atype that may be nul | , and one that may not be. So, if
you want to allow nul | St ri ngs, you write ?St ri ng for the type. If nul | s should not be allowed,
you just write St ri ng. It is not possible to passa ?St ri ng wherea St ri ng is expected, unless the
compiler can proveit'snot nul | . The easiest way to prove that the variableisnot nul | istouseani f
statement:

Example 9.1. Using option types

void foo(String arg) {...}

void bar(?String arg) {
if (arg !'= null) {

//Here Nice knows arg is not null, so it can
/1 be passed to a method which takes a String.
foo(arg);

foo(arg); //Here arg may or may not be null,
//so Nice gives a conpilation error.

Therefore, you never have to check that all your arguments aren't nul | again, unless you actually want
toalow nul | s,

It's important to remember that nullness inference doesn't work on fields of objects, only on local vari-
ables. There's a good reason for this: the value of an instance variable may have changed (updated by
another thread, perhaps) between the time the value was checked for nullness and the time it is actually
used. To avoid this problem, simply take alocal reference to the field first:

Example 9.2. Nullnessinference with fields

cl ass Person

?String nane

/] Takes a String, not a ?String
void printNanme(String nane)

println(nane);

void main(String[] args)
{
Person p = | oadPersonFronFil e(args[0]);
| et name = p. nane;
if (name == null)
t hrow new Excepti on("Unknown person!");

27

Types

el se
//safe to call printName, we know nane is a String.
print Nanme(nane) ;

Sometimes, you know that a value cannot be nul | , although it has an option type. Y ou can then use the
not Nul I method to assert this fact. If an expression e has type %t ype, then not Nul | (e) has type
It ype. Notethat if t ype isnot atype variable, !t ype isthe sameast ype.

Thenot Nul I method usesassert to check that the argument isnot nul | . This means that the check
will only happen at runtime if assertion checks are enabled. Otherwise, execution will continue, but the
JVM will probably fail soon afterwards with aNul | Poi nt er Excepti on if thevalueisnul | , and it
isused asif it wasnot nul | .

There are (rare) situations where it is necessary to alow anul | where one shouldn't normally go, for
instance if you need to declare a variable before entering a loop, but don't have a value to initialize it
with. You should first try to think about an alternative way of writing the code so that thisis not needed.
However, if there is none, a solution is to use cast (nul |) . This expression will be accepted in any
context. It isthen your responsibility to make sure that this value is not used.

Note that not Nul | and cast (nul |) have completely different uses. not Nul | is used to tell the
compiler that you know a certain value is not nul | , although the type system does not guarantee it. On
the other hand, cast (nul |) isused to provide a non-null value which is never going to be used. You
could not use not Nul | (nul 1) for that purpose, because this would fail at runtime if assertion checks
are enabled.

Additional information is available on the Wiki page about option types
[http://nice.sourceforge.net/cgi-bin/twiki/view/Doc/OptionTypes)].

There is related type, which is prefixed with an exclamation point (!). This is used to specify a
non-nul | type when it is not known if the original type allowed nul | or not. Thisis only needed for
type parameters; for al other types, !t ype isequivalenttot ype.

For instance, in the following method:

<T> T nyMet hod(Col | ecti on<T>);

the type parameter T can be instantiated at any type, including option types like ?String. If it is necessary
to exclude option types from the domain of T, the type can be specified this way:

<I'T> I'T nyMet hod(Col | ection<! T>);

Class Casting

Class casting is not used in Nice. Similar to Option types and nullness, if the compiler can prove that the
type of an object is compatible with the target context, it will alow that object to be used. This can be
doneusing thei nst anceof operator andani f statement:

Example 9.3. Proving the type of an object

void foo(FileQutputStreamarg) {...}

voi d bar(Qut put Stream arg) {
if (arg instanceof FileCQutputStrean) {

28

http://nice.sourceforge.net/cgi-bin/twiki/view/Doc/OptionTypes

Types

/I Here Nice knows arg is a FileQutputStream so it can
/1 be passed to a nmethod which takes a Fil eQutput Stream
foo(arg);

}
foo(arg); //Here arg may or nmay not be a Fil eQutput Stream
//so Nice gives a conpilation error.

As with Option types, type inference doesn't work on fields of objects or on method calls, only on local
variables. There's a good reason for this. the value of an instance variable may have changed (updated
by another thread, perhaps) between the time the value was checked for its type and the time it is actu-
ally used. Similarly, method calls can return objects of different sub-types every time they are called. To
avoid this problem, simply assign the value to alocal variable first.

Type Parameters

Classes and methods can be parameterized with type variables in Nice as is demonstrated in each of
their respective chapters. In addition to the ability to introduce type variables, Nice provides the ability
to constrain those types in certain ways. Option types are one such constraint.

Simple type parameters of the form

<type-variable[,type-variable..]>

are commonly encountered in Nice, but are a simplified form of a more general syntax. <T> is actually
shorthand for <Any T>, which saysthat T may be any type at all. It is possible to constrain T so that it
must be a subtype of some other type. This example showsthat fi | t er may be implemented for any
type T, but C must be a subclass of Collection.

<Col lection C, T> C<T> filter(C<T>, T->bool ean);

It's also possible to enforce some relation among the type parameters, such that one must be a subtype of
the other, as in this example from the standard library, which can beread as"Any T and U, so long as U
isasubtype of T".

<T, U| U< T> U] fill(T[] array, int->U value)

Notethenotation<T | T <: SoneType > meansthesamethingas<SonmeType T>.

There is aso anotation for the same class as the declaring class of a method: alike. For instance, the fol-

lowing class Foo declares a method copy, such that x. copy() hasthe sametype asx, x being of any
subclass of Foo.

Example 9.4. A copy method with an exact type

cl ass Foo
String val ue;

al i ke copy();

copy(#Foo f) = new Foo(val ue: f.value);

29

Types

cl ass Bar extends Foo

int id;
}
copy(#Bar b) = new Bar(val ue: b.value, id: generateNewl d());

Note that exact matching is required to implement the copy method.

Abstract Interfaces

Nice offers a powerful tool known as the abstract interface. Abstract interfaces are smilar in some re-
spects to regular Java- or Nice-style interfaces in that they define a set of methods that a type must im-
plement to be considered a member of the interface.

Two things make an abstract interface different from a regular interface. First, a class can be made to
implement an abstract interface after it's been defined, and even the source code is unnecessary. Y ou can
make the basic St r i ng class implement your new abstract interface, if you like. Second, an abstract in-
terface is not actually atype, it's an annotation which can be applied to types. This means that when you
declare an abstract interface, you're not creating a new type, you're saying "types which implement this
abstract interface will al have these methods", but those types are not related in any other way. So it is
not possibleto makeali st <MyAbstract | nt er f ace>, or to use an abstract interface as a type de-
clarationlikevar MyAbstract|Interface abslinter = ...

So what is an abstract interface for? Abstract interfaces can appear in type parameters, so one can write
methods for them:

<MyAbstractinterface T> void doSonet hing(T thing);

and then apply these methods to any object whose class implements MyAbst ract | nt er f ace. It'ses
pecially useful for situations where one wants to use a method on a group of unrelated types, as in the
example below. We have al og() method which is parameterized for any class which implements the
abstract interface LogEnt r y, and we make a number of classes implement LogEnt r y, so they can be
passed to our log method.

Example 9.5. Abstract I nterfaces

/1 Abstract interface for things which can be | ogged.
abstract interface LogEntry

String toLogString();
int severity();

}

/1 Sonme constants for severity |levels
let int DEBUG = 1;

let int |NFO = 2;

let int ERROR = 3;

<LogEntry E> void | og(E entry, int severity = -1)

if (severity < 0)
severity = entry.severity();

30

Types

someLogWiter.println(tinmeStam() + + severity + + entry.toLogString());

/1 Make strings pass straight through as DEBUG i nfo.
class java.lang. String inplements LogEntry;

toLogString(String s) = s;
severity(String s) = DEBUG

/1 Make throwables print a stack trace, plus a nessage
cl ass nice.lang. Throwabl e i nmpl enents LogEntry;

toLogStri ng(Throwabl e t)
{

let witer = new StringWiter();

let printWiter = new PrintWiter(witer);

printWiter.println("ERROR " + t.getC ass().getNanme() + ": " + t.getMessage());
t.printStackTrace(printWiter);

printWiter.close();

return witer.toString();

}
severity(Throwable t) = ERROR;

//We like to | og requests, too
cl ass javax.servlet.http. H t pServl et Request inplenments LogEntry;

toLogString(H t pServl et Request r) = "Request from " + r.getRenoteHost ();
severity(HttpServl et Request r) = | NFO

There are some interesting things to notice about this code. First, we only had to write| og() once, and
we left it up to the LogEntry to do the formatting. This could be done with a regular interface as well,
except that we also made String and Throwable implement our abstract interface, which we couldn't
have done with aregular interface. So now we can write code like

| og(request);
| og(" Begi nni ng processing");
try
{
1/ 0;
}
catch (Exception e)
{
log(e);
}

and our abstract interface implementations will take care of making sure that we get the right formatting
and severity levels. The most interesting thing about this code isthat if we writel og(5) then the com-
piler will catch the error, because byt e doesn't implement LogEnt ry. If we had defined | og with the
signature <E> void log(E entry, int severity = -1), we could have achieved al the
same effects, but we would have lost the type safety abstract interfaces gave us above - because <E>
means any type is allowed, so we would have had to define some defaults:

31

Types

toLogString(e)

t hrow new Exception("No toLogString nmethod defined!");

severity(e)

t hrow new Exception("No severity nethod defined!");

}

Then we'd be no better off than in a dynamically typed language - we wouldn't find out that we'd tried to
log an integer until we got an exception at runtime. With abstract interfaces, we were able to tell the

compiler exactly which classes should be allowed as argumentsto | og, and so our program is safer as a
result.

Daniel Bonniot, Nice's creator, invented abstract interfaces. You can read more about them in the Aca-
demic Research [http://nice.sourceforge.net/research.html] section of the Nice website.

32

http://nice.sourceforge.net/research.html
http://nice.sourceforge.net/research.html

	Foreword
	Chapter 1. Philosophy
	Chapter 2. Packages
	The main method

	Chapter 3. Classes and Interfaces
	Declaring a class
	Fields
	Constructors
	Parametric classes
	Declaring an Interface
	Enumerations

	Chapter 4. Methods
	Declaring methods
	Implementing methods
	Value Dispatch
	Named parameters
	Optional parameters

	Chapter 5. Assertions and contracts
	Syntax
	Enabling assertions and contract checking
	JDK 1.4 and later
	JDK 1.1, 1.2 and 1.3

	Chapter 6. Statements
	Local variables and constants
	Package variables and constants
	Extended for statement
	Local methods

	Chapter 7. Expressions
	Method calls
	Block Syntax for Method Calls

	Tuples
	Arrays
	String Literals
	Multi-line Strings
	String concatenation

	Anonymous methods
	Operators
	Conversion between primitive types

	Chapter 8. Interfacing with Java
	Using Java from Nice
	Subclassing a Java class
	Importing packages
	Option types

	Using Nice from Java
	Calling a method
	Calling a constructor
	Complete example
	Optional parameters
	Other aspects

	Chapter 9. Types
	Option types
	Class Casting
	Type Parameters
	Abstract Interfaces

